Posted on Leave a comment

Pumice Stone Mining Company & Pumice Exporter From Indonesia

Pumice Stone Mining Company & Pumice Exporter From Indonesia

Contact Us Via Phone / Whatsapp : +62-877-5801-6000

Our company is the producer of export quality pumice stone from Lombok Island of Indonesia. Our Company as the one of mainstay export product FOB and go International, we have :

  • East Lombok Island locations (50-100 hectares) ; in the river washing pumice stone and dried (200 workers).
  • West Lombok Island locations (30-50 hectares) ; the location beach front and mineral waters direct to washing pumice stone and dried (50 workers).

We are the biggest producer and exporter of pumice stone (origin Lombok island, Indonesia). We pack the pumice very good and we are ready to ship.

Packing and weight of pumice stone.

  • Our pumice stone is packed in PP. Woven bag size 60 x 100 cm.
  • The weight of pumice stone is about 23 kgs / bag with minimum weight 22 kilogram per-bag and maximum weight 28 kilogram per-bag.
  • Weight of pumice stone is depend on the dryness of the stone.
  • FOB Port : SURABAYA City Sea Port ( East Java Province of Indonesia )

Export Quality Pumice Stone

  • Brand names: Lombok Pumice, Deer Pumice, Tiger Pumice, Dragon Pumice, Indonesia Pumice, etc
  • Lead time for shipment payment to be advise for you shipping arrange container at Surabaya Closest port of dispatch port surabaya.
  • Present export markets: Taiwan, Korea, Hong Kong, Thailand, Bangladesh, India, Srilangka, Vietnam and target markets world wide.

Quality standard international / specifications / size

  • Color: Ash grey,
  • Condition: Dry, clean & processed,
  • Size: 1-2 cm, 2-3 cm, 2-4 cm and 3-5 cm
  • Packing : PP woven bag
  • Bag size: 60x100cm,
  • Bag weight: Approx. 25 kilogram per-bag (min 22 KG; max 28 KG).
  • Minimum order: 1 x 40’HC
  • 40′ feet high cube (HC) load: 1100 bags.
  • Quantity volume supply ability: around 200. 000 bags / month for dry season in March, April, May, June, July, August, September, Oct and middle November.





Geographical and geological position of Indonesia which is located in the tropics, where most of the area in Indonesia is located on a volcanic mountain line. Therefore, Indonesia is very rich in types of natural rocks, such as class C minerals which are widespread in several regions in Indonesia. Class C minerals include limestone/limestone, river stone, sand (backfill sand and iron sand), coal, roof tile, gravel, gypsum, calcite, manner, pyrite, silt, claystone, trass, andesite, pumice. , etc. But in this paper, we only discuss pumice.

Pumice or pumice is an industrial mineral that belongs to class C which plays a significant role in the industrial sector, both as a main ingredient and as an additional material. Pumice is a volcanic product that is rich in silica and has a porous structure, which occurs due to the release of steam and gases dissolved in it when it is formed, in the form of solid blocks, fragments to sand or mixed fine and coarse. Pumice consists of silica, alumina, soda, iron oxide. Color: white, bluish gray, dark gray, reddish, yellowish, orange. The chunks when dry can float on the water.

Many general investigations and exploration of pumice have been carried out in Indonesia, one of which is in several areas scattered on the island of Lombok, NTB. Lombok Island is one of the largest pumice-producing areas in Indonesia. Exploration is generally carried out by open pit mining and manually, which does not require special equipment to obtain it. Most of the pumice obtained from mining is only in the form of pumice which is separated based on its size which is then sold with variations in these sizes. However, in the subsequent processing to produce a useful product, it is carried out by companies that tend to use pumice as raw material, for example the paint industry.

Pumice can be applied in the industrial sector and the construction sector. Its application in the industrial sector tends to produce complementary goods,

such as paint, plaster, and cement. Meanwhile, the construction sector tends to produce building raw materials, such as lightweight aggregator concrete.

The development of the industrial and construction sectors, especially in developed countries, has shown a significant increase, and this has resulted in the increasing demand for Indonesian pumice stone. In terms of supply, pumice production in Indonesia mostly comes from West Nusa Tenggara and the rest from Ternate, Java and others. Meanwhile, imports of pumice can be said to be non-existent or domestic needs have been met.

In West Lombok, there are at least 20 pumice processing companies spread across various regions. However, currently pumice mining in West Lombok is reaping many problems, especially environmental problems, where most of the mining is carried out without a permit and does not pay attention to environmental sustainability.

Pumice waste from pumice sieving itself has damaged the environment. This is due to its disposal on land that is still productive. So an effort is needed to overcome this waste. One of them is by using pumice waste as a building material, in the form of bricks, paving blocks, concrete tiles, lightweight concrete. This is because apart from being one of the pumice waste management, it is also an economical alternative for building materials, as well as job opportunities for the community.


2.1 Definition

Pumice (pumice) is a type of rock that is light in color, contains foam made of glass-walled bubbles, and is usually referred to as silicate volcanic glass rock.

These rocks are formed from acidic magma by the action of volcanic eruptions that release the material into the air, then undergo horizontal transportation and accumulate as pyroclastic rocks. Pumice has high vesicular properties, contains a large number of cells (cellular structure) due to the expansion of the natural gas foam contained in it, and is generally found as loose material or fragments in volcanic breccias. While the minerals contained in pumice are: Feldspard, Quartz, Obsidian, Kristobalite, Tridymite.

2.2 Forming process

Pumice occurs when acidic magma rises to the surface and comes into contact with large air suddenly. Natural glass foam with the gas contained in it has a chance to escape and the magma freezes suddenly. Pumice are generally found as fragments that are ejected during volcanic eruptions, the size is from gravel to boulder.

Pumice commonly occurs as melt or runoff, loose material, or fragments in volcanic breccias. Pumice can also be made by heating obsidian, so that the gas escapes. Heating performed on obsidian from Krakatoa, the temperature required to convert obsidian into pumice on average 880oC. The specific gravity of obsidian which was originally 2.36 dropped to 0.416 after the treatment because it floated in the water. This pumice stone has hydraulic properties. Pumice is white-grey, yellowish to red, vesicular texture with varying hole sizes, either related to each other or not scorched structure with orientated orifices.

Sometimes the hole is filled with zeolite or calcite. This rock is resistant to freezing dew (frost), not so hygroscopic (sucking water). Has low heat transfer properties. The compressive strength is between 30-20 kg/cm2. The main composition of amorphous silicate minerals.Other rock types that have the same physical structure and origin as pumice are pumicite, volcanic cinter, and scoria. While the minerals contained in pumice are feldspar, quartz, obsidian, cristobalite, and tridymite.

Based on the manner of formation (desposition), particle size distribution (fragment) and the material of origin, pumice deposits can be classified as follows:

  • Sub area
  • Subaqueous
  • New ardante; i.e. deposits formed by the horizontal outward movement of gases in lava, resulting in a mixture of fragments of various sizes in a matrix form.
  • Result of re-deposit (redeposit).

From the metamorphosis, only areas that are relatively volcanic will have an economical pumice deposit. The geological age of these deposits is between tertiary and present. Volcanoes that were active during this geological age included the Pacific Ocean fringe and the route from the Mediterranean Sea to the Himalayas and then to East India.

2.3 Properties of pumice

The chemical properties of pumice are as follows:

a. Its chemical composition:

SiO2 : 60.00 – 75.00%
Al2O3 : 12.00 – 15.00%
Fe2O3 : 0.90 – 4.00%
Na2O : 2.00 – 5.00%
K2O : 2.00 – 4.00%
MgO : 1.00 – 2.00%
CaO : 1.00 – 2.00%
Other elements: TiO2, SO3, and Cl.

b. Loss of glow (LOI or loss of ignition): 6%

c. pH : 5

d. light color

e. Contains foam made of glass-walled bubbles.

f. Physical properties:

Bulk weight : 480 – 960 kg/cm3

Water infiltration : 16.67%

Specific Gravity : 0.8 gr/cm3

Sound transmission: low

Compressive strength to load ratio : High

Heat conductivity: low

Resistance to fire: up to 6 hours.


3.1 Mining Engineering

Pumice as an excavated material is exposed near the surface, and is relatively not hard. Therefore, mining is carried out by open pit mining or surface mining with simple equipment. Separation of impurities is done manually. If a certain grain size is desired, grinding and sifting processes can be carried out.

1) Exploration

Searching for the presence of pumice deposits is carried out by studying the geological structure of rocks in the area around the volcanic pathway, among others by searching for outcrops by geoelectric or by drilling and constructing several test wells. Next, a topographic map of the area is made which is estimated to contain large-scale pumice deposits in order to carry out detailed exploration. Detailed exploration aims to determine the quality and quantity of reserves with more certainty. Exploration methods used include drilling (hand drill and machine drill) or by making test wells.

In determining which method to use, one must look at the condition of the location to be explored, which is based on the topographic map made at the prospecting stage. Exploration method by making test wells, begins with making a rectangular pattern (can also be in the form of a square) with a distance from one point or from one test well to the next test well between 25-50 m. The equipment used in making the test wells include hoes, crowbars, belincong, buckets and ropes.

Exploration by drilling can be done using a drill equipped with a bailer (sample catcher), either hand drill or machine drill. In this exploration, more measurements and mapping were also carried out

details for use in reserve calculations and mine planning.

2) Mining

In general, pumice deposits are located close to the earth’s surface, so mining is carried out by open and selective mining. Overburden stripping can be done with simple tools (manually) or with mechanical tools, such as bulldozers,

scrapers, and others. The pumice layer itself can be excavated using an excavator such as a backhoe or a power shovel, then loaded directly into trucks to be transported to the processing plant.

3) Processing

In order to produce pumice with quality that is in accordance with export requirements or needs in the construction and industrial sectors, pumice from the mine is processed first, among others by removing impurities and reducing its size.

Broadly speaking, the pumice processing process consists of:

a. Sorting (sorting); to separate clean pumice from pumice which is still a lot of impurities (impuritis), and is done manually or with scalping screens.

b. Crushing (crushing); with the aim of reducing size, using crushers, hammer mills, and roll mills.

c. Sizes; to sort the material based on the size according to market demand, which is done by using a sieve (screen).

d. Drying (drying); This is done if the material from the mine contains a lot of water, one of which can be done using a rotary dryer.


Found Place

The presence of pumice in Indonesia is always associated with a series of Quaternary to young Tertiary volcanoes. Places where pumice is found include:

Jambi: Salambuku Lubukgaung, Kec. Bangko, Kab. Sarko (a fine pyroclastic material derived from volcanic rock or tuff with pumice components with a diameter of 0.5-0.15 cm in the Kasai formation).

Lampung: around the Krakatau Islands especially on Long Island (as a result of the eruption of Mount Krakatoa which spewed pumice).

West Java: Danu Crater, Banten, along the west coast (allegedly the result of the activities of Mount Krakatau); Nagreg, Kab. Bandung (in the form of fragments in tuff); Mancak, Pabuaran Kab. Serang (good quality for concrete aggregates, in the form of fragments in tuff and runoff); Cicurug Kab. Sukabumi (SiO2 content = 63.20%, Al2O3 = 12.5% ​​in the form of tuff rock fragments); Cikatomas, Cicurug, Mount Kiaraberes, Bogor.

Special Region of Yogyakarta; Kulon Progo in the Old Andesite Formation.

West Nusa Tenggara: Lendangnangka, Jurit, Rempung, Pringgasela (outcrop thickness 2-5 m spread over 1000 Ha): Masbagik Utara Kec. Masbagik Kab. East Lombok (thickness of outcrop 2-5 m spread over 1000 Ha); Tanah Beak, Kec. Batukliang Kab. Central Lombok (used as a lightweight concrete mix and filter); Kopang, Mantang Kec. Batukliang Kab. West Lombok (has been used for brick, 3000 ha spread); Narimaga District Rembiga Kab. West Lombok (outcrop thickness 2-4 m, has been cultivated by the people).

Maluku: Rum, Gato, Tidore (SiO2 content = 35.92-67.89%; Al2O3 = 6.4-16.98%).


5.1 Utilization

Pumice is used more in the industrial sector than in the construction sector.

 In the construction sector

In the construction sector, pumice is widely used for the manufacture of lightweight aggregates and concrete. Aggregates are lightweight because they have very advantageous characteristics, namely light weight and soundproof (high in insulation). Pumice specific weight
of 650 kg/cm3 compared to ordinary bricks weighing 1,800 – 2,000 kg/cm3. From pumice it is easier to make large blocks, which can reduce plastering. Another advantage of using pumice in the manufacture of aggregates is that it is resistant to fire, condensation, mildew and heat, and is suitable for acoustics.

 In the industrial sector

In the industrial field, pumice is used as a filler, polisher, cleaner, stonewashing, abrasive, high temperature insulator and others.

Table 1. Industry users, functions, and degrees of pumice grain size:

Industry Usability Degree Size

Paint – Coarse nonskid coating

  • Acoustic insulation paint
  • Coarse texture paint filler
  • Flattening agent Fine-coarse

Very smooth

Chemical – Coarse filtration media

  • Chemical carriers
  • Coarse sulfur match trigger


Metals and plastics – Very fine cleaning and polishing

  • Vibratory and barrel finishing
  • Pressure blasting Very fine-medium
  • Medium Electro-plating
  • Glass or glass cleaner
    Very smooth

Compounder – Medium hand soap powder

  • Glass or glass cleaner
    Very smooth

Cosmetics and toothpaste – Fine teeth polishes and fillings

  • even skin
    Liquid powder

Rubber – Medium Eraser

  • Mold material
    Very smooth

Skin – For medium shine

Glass and mirrors – Smooth TV tube processing

  • Smooth TV tube glass polisher and polish
  • Bevel finishing
  • Smooth glass cut Very fine

Very smooth

Electronics – Circuit board cleaner Very fine

Pottery – Smooth Filler

Description: coarse = 8 – 30 mesh; medium = 30 – 100 mesh; fine = 100 – 200 mesh; very fine > 200 mesh.

Source: Minerals Industry, Bulletin, 1990.

Pumice Media Filtration

As a filtration medium, pumice is widely used to clean urban and industrial waste. Because it has a large surface area and is highly porous, pumice is ideal for use as a filtration agent.

A growing body of research has shown buoyancy to be an effective medium for filtering drinking water. The foamy structure and near-whiteness of floating Hess make it ideal for capturing and retaining cyanobacterial toxins and other impurities that are found contaminating drinking water.

Pumice has several advantages over other filtration media such as expanded clay, anthracite, sand, and sintered PFA. Tests carried out on a comparison between bed sand and pumice filters for treating water found pumice to be superior in turbidity removal performance and head loss.

The benefits of pumice for water treatment applications include:

-Increased filtration rate
-low energy use
-as a good base mat in the filtration medium
-Larger surface area
-Low-cost filter maintenance
-Economical: saves on capital expenditure for new waste treatment plants

Beverage Filtration

The purification of ingredients and even the finished drink is important for taste consistency and quality. The same characteristics that make pumice a superior filtration medium for water also apply to beverages and other liquids. Pumice is non-toxic, completely inert and very versatile – it can be ground consistently against a wide range of specifications.

As a decorative lamp

In its development, pumice is widely used to decorate decorative lights. As has been done by Deddy Effendy, a craftsman from Yogyakarta, who uses pumice stone to beautify the design or model of his artificial bias lamp. The manufacturing process begins by cutting pumice stone with a chainsaw into 2-3 millimeter thick slabs with a length and width of about 10-15 cm.

The new buoyancy specifications are used.

Here are some examples of specifications for pumice used in the industrial sector:

a) For pigments are as follows:

  • Loss of glow : max. 5%
  • Flying substance : max. 1%
  • Passed 300 m filter : min. 70%
  • Passed 150 m filter : max. 30%

b) For pottery

  • SiO2 : 69.80%
  • Al2O3 : 17.70%
  • Fe2O3 : 1.58%
  • MgO : 0.53%
  • CaO : 1.49%
  • Na2O : 2.45%
  • K2O : 4.17%
  • H2O : 2.04%
  • Water content: 21%
  • Flexural strength : 31.89 kg/cm3
  • Water infiltration : 16.66%
  • Volume weight: 1.18 gr/cm2
  • Plasticity: Plastic
  • Grain size: 15 – 150 mesh

The composition of the material for this pottery consists of pumice, clay, and lime in a ratio of 35%, 60% and 5%, respectively. The use of pumice is intended to reduce weight and improve the quality of pottery. In addition to the construction and industrial sectors, pumice is also used in agriculture, namely as an additive and a substitute for agricultural soil.


Pumice Prospect

To be able to see the prospects for the Indonesian pumice mining industry in the future, it is necessary to review or analyze several factors or aspects that influence, both supporting and hindering. Because the data obtained were very limited, the analysis was only carried out qualitatively.

a. Influential Aspects

The development of the pumice mining industry in Indonesia, whether it has been, is being carried out or will be implemented in the future, is influenced by the following aspects:

Potential availability

The potential of Indonesian pumice scattered in the areas of Bengkulu, Lampung, West Java, Yogyakarta, West Nusa Tenggara, Bali and Ternate, cannot be known with certainty. But it is estimated to have reserves of more than 12 million m3. according to

Mining Service of NTB Province, the largest potential for pumice deposits is on the island of Lombok, West Nusa Tenggara, and its reserves are estimated at more than 7 million m3.

When viewed from the current production level, which is around 175,000 tons per year, the potential for pumice in Indonesia has only been exhausted for more than 40 years. However, the exploration and inventory of pumice deposits in the areas mentioned above needs to be upgraded to a more detailed exploration, so that the amount of reserves and their quality can be known with certainty.

Government policy

Aspects that are no less important for the mining industry are government policies, including the declaration of exports outside of oil and gas since Pelita IV, deregulation in the export sector, and increasing the use of natural resources. This policy is basically an incentive for exporters and entrepreneurs to invest, including in the pumice mining industry. However, in order for the government’s policy to be more successful, the pumice mining industry still needs to be accompanied by convenience in licensing and technical assistance, exploitation, as well as information about its potential; especially for entrepreneurs from economically weak groups.

Demand factor

With the development of the construction sector and the industrial use of pumice in developed and other developing countries, the demand for pumice has been increasing.

In the construction sector, in line with the increase in the population in the country, the need for housing continues to increase, which of course will increase the use of construction materials. For areas close to the location where pumice is found, and it is difficult to find bricks and tiles made of red earth, as well as stone for the foundation, pumice stone can be used as a substitute for this construction.

In recent years, the use of pumice stone for lightweight aggregates, namely roof tile, has been carried out by a building material company in Bogor, West Java and produces tile products that are lighter and stronger.

In developed countries, the use of lightweight and fire-resistant construction materials for the construction of buildings and housing is increasingly being prioritized. In this case, the use of pumice is very suitable because in addition to being light, it is also easy to handle, namely being formed into aggregates of the desired size so as to simplify and speed up the construction process. Likewise in developing countries, the use of pumice stone for the construction of housing that is easy and cheap and safe has begun to be widely practiced.

The increasing public interest in the use of jean-type textile materials, both at home and abroad, has spurred the jean-type textile industry to produce on a large scale, so that the use of pumice stone as stonewashing continues to increase.

Due to the advantages of the nature of pumice by using other minerals such as pumice compared to using other minerals such as pumice compared to using other minerals such as bentonite, zeolite, or kaolin, in developed countries, the use of pumice as a filler in pesticide industry, began to show an increase. If you use pumice, the pesticide will not sink in the water so it will work relatively more effectively, whereas if you use bentonite or kaolin, the pesticide will sink quickly and be less effective.

The availability of the above is evident from the level of demand (consumption and export) of limestone which continues to increase almost every year. In the pottery type ceramic industry, the use of pumice stone will improve the quality of the ceramic, which is lighter and stronger. However, the use of pumice for ceramic materials in the country is currently not widely developed and research is still being carried out.

Price factor

The current structure or trading system for pumice is still not profitable for pumice mining entrepreneurs. For example, in the West Nusa Tenggara area, in 1991 the price of pumice at the yambang location was around Rp. 450.00 – Rp. 500.00 per sack, and around Rp. 700.00 per sack. When finished, the dip roses will produce

net pumice stone about 30 kg/sack. Meanwhile, the price of pumice exported, if calculated from the value and volume of exports in 1991, obtained a price of Rp. 270.50 per kg. If the price is assumed to be the up to 40% price in the export destination country, transportation costs, taxes and insurance, as well as other costs of 40% of the price mentioned above, then the selling price of pumice stone at the exporter’s place is around Rp. 165.00 per kg, or Rp. 4,950.00 per kg.

Thus it is clear that the pumice at the mine site is very low. In other words, the pumice trading system in Indonesia tends to benefit exporters more than the mining entrepreneurs themselves. Therefore, there is a need for an overhaul in the pumice trading system in such a way, which can further support the improvement of the pumice mining industry, and still benefit all parties.


In its use, pumice can be substituted with other materials. In the construction industry sector, pumice can be replaced by kaolin and feldspar as raw materials for roof tiles, waterways (culverts). For building walls, the use of pumice is competitive from red brick, asbestos, wooden planks, and so on. In the industrial sector, as well as raw materials in the ceramics industry, it can be substituted with bentonite, kaolin, feldspar, and zeolite which tend to be easy to obtain.

Other aspects

Other aspects that can affect the mining sector, particularly pumice mining, are:

a) Land overlapping problem.

In fact, there is a lot of potential for pumice found in plantations, forestry (protected forests and nature reserves), and other areas, resulting in a conflict of interest, which in the end tends to not be exploited.

can be used / cultivated.

b) Transportation problems

Although the price of pumice is relatively cheaper, because the transportation distance from the location where the pumice is located and the industries that use it is quite far, these industries tend to use other industrial minerals (substitutes).

c) Important information and technology utilization.

Basically, many investors are interested in the pumice mining industry. However, due to the lack of information on more accurate potential data, the investors continued their intentions. Likewise, research and information on technology for the use of pumice in the downstream industry for users, domestically still needs to be further improved, in order to support the development of the mining industry in the future.

b. Indonesian Pumice Stone Prospect

Based on an analysis of developments during the period 1985-1991 and the aspects that influenced it, the prospect of the Indonesian pumice mining industry in the future (until 2000) is estimated to be quite good.

c. Supply

Although there are substitutions of other materials for pumice and its use in the domestic industrial sector which has not developed much, if viewed from the side of the considerable potential, the increasing demand from abroad, as well as the government’s policy in exporting which is more flexible, it is estimated that the supply side is expected to be , namely the production and imports of pumice, will continue to increase.

 Production

Pumice production in the future is likely to be more influenced by domestic economic developments. Therefore, for the projection, the annual gross domestic income (GDP) growth rate is used; among others, 3%

(low projection), 5% (medium projection), 7% (high projection), then pumice production in 2000 is estimated to reach between 225,100-317,230 tons

Table 6. Projection of Indonesian Pumice Production in 1997 and 2000

Production on Projected Production (Tons)
LP 1997 2000

Low (3.00 %) 194,200 225,100

172,554 Medium (5.00 %) 209,740 267,680

Height (7.00%) 225,100 317,230

Note: LP = Average growth rate per year

 Import

In line with the development of technology, in the future pumice refining in the country is estimated to be more advanced, and can produce products with specifications as required by the user industry. Thus, the import of pumice which originally arose as a result of its quality not being able to meet the downstream industry’s demand, can now be supplied from within its own country. Thus, in 2000 imports of pumice ceased to exist.

d. Request

Meanwhile, in line with the increasing need for construction materials that are lighter, safer and easier to handle, as well as increasing technological advances in the use of pumice in the industrial sector, the demand for pumice from inside and outside will continue to increase.

e. Consumption

Domestic consumption of pumice in recent years has begun to show an increase, especially in the construction sector. In the future, the consumption of pumice is expected to continue to increase. For the projection calculated by GDP growth rates of 3%, 5%, and 7%, it is obtained that the amount of pumice consumption in the country in 2000 was between 65,130-91,770 tons.

Table 7. Projected Indonesian Pumice Consumption in 1997 and 2000

Production on Projected Production (Tons)
LP 1997 2000

Low (3.00 %) 56.180 65.130

49,917 Medium (5.00 %) 60,670 77,440

Height (7.00%) 65,430 91,770

Note: LP = Average growth rate per year

f. Export

Export projections to meet demand from other countries in 2000 are estimated to reach between 184,770-369,390 tons (Table 3).

Table 8. Projection of Indonesian Pumice Exports in 1997 and 2000

Production on Projected Production (Tons)
LP 1997 2000

Low (3.00 %) 119.480 138.510

106,161 Medium (5.00 %) 139,150 164,690

Height (7.00%) 184.770 369.390

Note: LP = Average growth rate per year



Pumice, which is widely found in several regions in Indonesia, has many uses and has been widely used by the people of Indonesia, and has even become a commoditive material for Indonesian exports to foreign countries. There are also many pumice grinding or refining factories in Indonesia, especially in areas of potential for pumice excavation. The pumice waste generated from the refining process is not utilized by the local community, causing the community’s productive land to be reduced because it is used as a dumping ground for pumice waste.

Definition of pumice waste

Pumice waste is the result of the pumice sieving process that is no longer used because the amount is less than packing requirements to be marketed (size of pumice waste aggregate ranges from 0.1mm – 1cm).The process of formation of pumice waste.

Pumice waste comes from pumice processing factories which is the remnants of pumice itself and cannot be marketed to consumers because of its irregular shape and gradation smaller than 1 cm. Pumice waste is almost like sand and gravel in general, only the unit weight is lighter and it is porous that distinguishes it from ordinary gravel. Because of its lightness, pumice waste is very good to be processed into building materials that have a light weight.

Utilization of pumice waste

Pumice waste can be used as:

As a substitute for class C excavation building materials

Reducing the use of productive land that is used as a dumping ground for pumice waste.

Increasing people’s income by creating new job opportunities by utilizing pumice waste that is no longer used.

Negative impact of pumice mining in Lombok, NTB

In addition to having a positive effect in the form of several uses, pumice also has a negative impact on the environment and society. Especially seen on the island of Lombok, NTB.

Overall it can be said that there has been a decline in soil fertility due to mining. The decrease in macronutrient content (N, P, K), organic C, and CEC values ​​(Cation Exchange Capacity) was caused by the removal of the top soil layer and the appearance of a coarser textured bottom layer. As a result of the demolition and removal of the top layer, the former pumice mining soil contains a larger fraction of sand than the unmined soil. Based on the rating criteria proposed by PPT Bogor (1983), the physical properties of the former pumice mining soil have unstable aggregates, very high porosity and very fast permeability. The reversal of the soil layer will be very detrimental to post-mining plant growth. Degradation of soil structure as a result of dismantling the tillage layer will result in more susceptibility of the soil to erosion, a decrease in the ability of the soil to hold water (water holding capacity) and can accelerate the loss of nutrients in the soil.

Level of land damage due to pumice mining

The level of land damage due to mining of pumice-C excavation is approached by looking at several factors: excavation depth, mining area, land slope, presence of vegetation and post-mining conservation activities. Based on the score used, the level of land damage (heavy, moderate and light damage) varies at each mining site. In the center of pumice mining in West Lombok, about 34% were heavily damaged, 61% were moderately damaged and 5% were lightly damaged. In Central Lombok, about 20% were heavily damaged, 75% were moderately damaged and 5% were lightly damaged, while in East Lombok Regency it was around

12% heavily damaged, 80% moderately damaged and 8% lightly damaged. The heavy damage was caused by deep excavation (>3m), steep slopes (>20%), and the absence of post-mining conservative land management efforts.

Deep excavations (>3m) were found at several mining sites in northern and central Lombok. Digging of 1.5 – 3 meters is the most dominant digging depth in all locations. Deep digging (>3 m) on sloping land (>20%) and cliffs caused the most damage, although the extent of damage was relatively narrow. Shallow excavation on flat land but without any post-digging revegetation will also spur land damage in the next stage. The increase in the area of ​​mining land has implications for the extent of land damage that occurs, which of course will have implications for the increased cost of land restoration required. Mining carried out on land with a slope of >20% is found in several places, namely in North Lombok, Batukliang, and Pringgasela. The most dominant slope of the mining area in all locations ranges from 6 – 10%.

Of all the observed mining locations, it turns out that most of the post-mining land management efforts have not been carried out. In other words, most of the former mining areas are still abandoned without any rehabilitation efforts. In addition to the three aspects discussed above, the area of ​​the mining area also plays an important role in creating an image of the level of land damage. Mining areas with an average area of ​​>15 ha are found in North Lombok. Mining areas with an area of ​​between 6-10 ha are mostly found in North Lombok and several locations in Kec. Masbagik East Lombok. Mining area between 1-5 Ha is the most common area found in all mining locations.


Pumice is formed from volcanic eruptions. Pumice or pumice is a type of rock that is light in color, contains foam made of bubbles glass-walled, and is usually referred to as silicate volcanic glass rock. These rocks are formed from acidic magma by the action of volcanic eruptions which release the material into the air and then undergo horizontal transportation and accumulate as pyroclastic rocks.

Pumice has high nersicular properties, contains a large number of cells due to the expansion of the natural gas foam contained therein. It is generally found as loose material or fragments in volcanic breccias. While the minerals contained in pumice are feldpar, quartz, obsidian, cristobalite and tridymite. One of the potential minerals for Gol C in West Lombok is pumice, its presence is spread in several sub-districts, especially in the northern part of West Lombok, such as Bayan, Gangga, Kayangan sub-districts, some in the middle, namely Narmada and Lingsar sub-districts. Its existence is as a result of the activity of the Rinjani volcano which is rich in silica and has a porous structure that occurs due to the release of gases in it at the time of its formation.

In West Lombok, there are at least 20 pumice processing companies spread across various regions. Pumice in West Lombok is an export commodity, especially to China as an ingredient in textile washing. In general, pumice is also used as a abrasive, lightweight and fire-resistant building material, as a filler for high, low and acoustic insulators, as an absorbent and filter material. Currently, pumice mining in West Lombok is reaping many problems, especially environmental problems, where most of the mining is carried out without a permit and does not pay attention to environmental sustainability.


Fadillah, Said. 2005. Mining AMDAL Training Module. Jakarta: The Ministry of Regional Development is lagging behind Sukandarrumudi. 2009. Industrial Minerals. Yogyakarta: UGM Press.

Posted on Leave a comment

Pimpstensleverandør fra Indonesien

Pimpstensudforskning i Indonesien

Endvidere er der lavet et topografisk kort over området, hvor der findes store pimpstensaflejringer til detaljeret udforskning. Der blev foretaget en detaljeret efterforskning for at bestemme kvaliteten og styrken af ​​reserver med større sikkerhed. De anvendte efterforskningsmetoder omfatter boring (håndboring eller maskinboring) eller fremstilling af testbrønde.

Ved bestemmelse af, hvilken metode der skal anvendes, skal tilstanden af ​​det sted, der skal udforskes, tages i betragtning, hvilket er baseret på det topografiske kort, der blev lavet på efterforskningsstadiet.

Efterforskningsmetoden udføres ved at lave testbrønde, det anvendte mønster er rektangulært (kan også være i form af et kvadrat) med en afstand fra et punkt/testbrønd til næste testbrønd mellem 25-50 m. Udstyret, der anvendes til fremstilling af testbrønde, omfatter; hakke, koben, hakke, spand, reb.

Mens udforskning ved boring kan udføres ved hjælp af en boremaskine udstyret med en bailer (prøvefanger), enten hånd- eller maskinbor. I denne efterforskning udføres målinger og kortlægninger mere detaljeret til brug for beregning af reserver og mineplanlægning.

Udvinding af pimpsten i Indonesien
Generelt er pimpstensaflejringer placeret nær jordens overflade, minedrift udføres ved åben og selektiv minedrift. Afisolering af overbelastning kan udføres med simple værktøjer (manuelt) eller med mekaniske værktøjer, såsom bulldozere, skrabere og andre. Selve pimpstenslaget kan udgraves ved hjælp af en gravemaskine, inklusive en rendegraver eller motorskovl, og læsses derefter direkte i en lastbil for at blive transporteret til forarbejdningsanlægget.

Pimpstensbehandling i Indonesien
For at producere pimpsten af ​​kvalitet, der overholder eksportkrav eller behovene i bygge- og industrisektoren, forarbejdes pimpsten fra minen først, blandt andet ved at fjerne urenheder og reducere dens størrelse.

Overordnet set består pimpstensbehandlingsprocessen af:

  • Sortering (sortering); at adskille ren pimpsten og pimpsten med mange urenheder (impuritis), og gøres manuelt eller ved at skalpere skærme.
  • Knusning (knusning); at reducere størrelsen ved hjælp af knusere, hummermøller og valsemøller.
  • Størrelser; For at sortere materialet ud fra størrelsen efter markedets efterspørgsel, sker det ved at bruge en skærm.
  • Tørring (tørring); hvis materialet fra minen indeholder meget vand, er det nødvendigt at tørre det, blandt andet ved at bruge en rotationstørrer.
  • Hvor finder man pimpsten i Indonesien
  • Tilstedeværelsen af ​​indonesisk pimpsten er altid forbundet med en række kvartære til tidlige tertiære vulkaner.

Steder, hvor pimpsten findes, omfatter:

  • Jambi: Salambuku, Lubukgaung, Kec. Bongko, Kab. Sarco (en fin pyroklastik)
    afledt af enheder af vulkansk sten eller tuf med pimpstenskomponenter med en diameter på 0,5-15 cm indeholdt i Kasai-formationen).
  • Lampung: omkring Krakatoa-øerne, især på Long Island (som følge af udbruddet af Mt.
    Krakatoa, der spyr pimpsten).
  • Vestjava: Danu-krateret, Banten, langs vestkysten (angiveligt resultatet af aktiviteten
  • G. Krakatoa); Nagre, Kab. Bandung (i form af fragmenter i tuf); Mancak, Pabuaran, Kab. Serang (god kvalitet til betontilslag, i form af fragmenter i tuf og afstrømning); Cicurug Kab. Sukabumi (SiO2-indhold = 63,20%, Al2O3 = 12,5% i form af tufstensfragmenter); Cikatomas, Cicurug G. Kiaraberes Bogor.
  • Særlig region Yogyakarta: Kulon Progo i den gamle Andesit-formation.
  • West Nusa Tenggara: Lendangnangka, Jurit, Rempung, Pringgesela (udspringstykkelse 2-5 m fordelt på 1000 Ha); North Masbagik Kec. Masbagik Kab. East Lombok (udspringstykkelse 2 – 5 m fordelt på 1000 Ha); Kopang, Mantang Kec. Batukilang-distriktet. West Lombok (er blevet brugt til 3000 hektar mursten); Narimaga-distriktet. Rembiga Kab. West Lombok (udspringstykkelse 2-4 m, er blevet dyrket af folket).
  • Maluku: Rom, Gato, Tidore (SiO2-indhold = 35,67 – 67,89%; Al2O3 = 6,4 – 16,98%).
  • East Nusa Tenggara: Tanah Beak, Kec. Baturliang Kab. Central Lombok (bruges som en blanding af letbeton og filtre).
Posted on Leave a comment

World Pumice Stone Supplier

World Pumice Stone Supplier From Indonesia

Pumice For Horticulture

Pumice is a very light weight, porous and abrasive material and it has been used for centuries in the construction and beauty industry as well as in early medicine.

It is also used as an abrasive, especially in polishes, pencil erasers, and the production of stone-washed jeans. Pumice was also used in the early book making industry to prepare parchment paper and leather bindings.

There is high demand for pumice, particularly for water filtration, chemical spill containment, cement manufacturing, horticulture and increasingly for the pet industry.

Pumice For Personal care

ATTACHMENT DETAILS pumice-stone-supplier-indonesia

Pumice soap bars

Pumice has been used as a material in personal care for thousands of years.

It is an abrasive material that can be used in powdered form or as a stone to remove unwanted hair or skin.

In ancient Egypt skincare and beauty were important and makeup and moisturizers were widely used. One common trend was to remove all hair on the body using creams, razors and pumice stones.

Pumice in powdered form was an ingredient in toothpastes in ancient Rome.

Nail care was very important in ancient China; nails were kept groomed with pumice stones, and pumice stones were also used to remove calluses.

It was discovered in a Roman poem that pumice was used to remove dead skin as far back as 100 BC, and likely before then.

It has been used throughout many eras since then, including the Victorian Era.

Today, many of these techniques are still used; pumice is widely used as a skin exfoliant. Even though hair removal techniques have evolved over the centuries, abrasive material like pumice stones are also still used.

“Pumice stones” are often used in beauty salons during the pedicure process to remove dry and excess skin from the bottom of the foot as well as calluses.

Finely ground pumice has been added to some toothpastes as a polish, similar to Roman use, and easily removes dental plaque build up. Such toothpaste is too abrasive for daily use.

Pumice is also added to heavy-duty hand cleaners (such as lava soap) as a mild abrasive.

Some brands of chinchilla dust bath are formulated with powdered pumice.

Old beauty techniques using pumice are still employed today but newer substitutes are easier to obtain.

Pumice For Cleaning

Bar of solid pumice stone

Pumice stone, sometimes attached to a handle, is an effective scrubbing tool for removal of limescale, rust, hard water rings, and other stains on porcelain fixtures in households (e.g., bathrooms).

It is a quick method compared to alternatives like chemicals or vinegar and baking soda or borax.

Pumice For Horticulture

A good soil requires sufficient water and nutrient loading as well as little compaction to allow easy exchange of gases.

The roots of plants require continuous transportation of carbon dioxide and oxygen to and from the surface.

Pumice improves the quality of soil because of its porous properties, water and gases can be transported easily through the pores and nutrients can be stored in the microscopic holes.

Pumice rock fragments are inorganic therefore no decomposition and little compaction occurs.

Another benefit of this inorganic rock is that it does not attract or host fungi or insects. Drainage is very important in horticulture, with the presence of pumice tillage is much easier.

Pumice usage also creates ideal conditions for growing plants like cacti and succulents as it increases the water retention in sandy soils and reduces the density of clayey soils to allow more transportation of gases and water.

Addition of pumice to a soil improves and increases vegetative cover as the roots of plants make slopes more stable therefore it helps reduce erosion.

It is often used on roadsides and ditches and commonly used in turf and golf courses to maintain grass cover and flatness that can degrade due to large amounts of traffic and compaction.

With regard to chemical properties pumice is pH neutral, it is not acidic or alkaline.

In 2011, 16% of pumice mined in the United States was used for horticultural purposes.

Pumice contributes to soil fertility in areas where it is naturally present in the soil due to volcanic activity.

For example, in the Jemez Mountains of New Mexico, the Ancestral Puebloans settled on “pumice patches” of the El Cajete Pumice which likely retained a greater amount of moisture and was ideal for farming.

Pumice For Construction

Pumice is widely used to make lightweight concrete and insulative low-density cinder blocks.

The air filled vesicles in this porous rock serves as a good insulator.

A fine-grained version of pumice called pozzolan is used as an additive in cement and is mixed with lime to form a light-weight, smooth, plaster-like concrete.

This form of concrete was used as far back as Roman times.

Roman engineers utilized it to build the huge dome of the Pantheon with increasing amounts of pumice added to concrete for higher elevations of the structure.

It was also commonly used as a construction material for many aqueducts.

One of the main uses of pumice currently in the United States is manufacturing concrete.

This rock has been used in concrete mixtures for thousands of years and continues to be used in producing concrete, especially in regions close to where this volcanic material is deposited.

New studies prove a broader application of pumice powder in the concrete industry.

Pumice can act as a cementitious material in concrete and researchers have shown that concrete made with up to 50% pumice powder can significantly improve durability yet reduce the greenhouse gas emissions and fossil fuel consumption.

Pumice For Early medicine

Pumice has been used in the medicinal industry for more than 2000 years. Ancient Chinese medicine used ground pumice along with ground mica and fossilized bones added to teas to calm the spirit.

This tea was used to treat dizziness, nausea, insomnia, and anxiety disorders. Ingestion of these pulverized rocks were actually able to soften nodules and was later used with other herbal ingredients to treat gallbladder cancer and urinary difficulties.

In western medicine, beginning in the early 18th century, pumice was ground into a sugar consistency and with other ingredients was used to treat ulcers mostly on the skin and cornea.

Concoctions such as these were also used to help wounds scar in a healthier manner. In approximately 1680 it was noted by an English naturalist that pumice powder was used to promote sneezing.

Posted on Leave a comment













*佔碑:Salambuku,Lubukgaung,Kec。邦科,卡布。 Sarco(一種精細的火山碎屑)
來自 Kasai 組中直徑為 0.5-15 厘米的火山岩或凝灰岩單元,其中含有浮石成分)。

  • 西爪哇:西海岸的萬丹達努火山口(據稱是該活動的結果)
    G. 喀拉喀托);納格,卡布。萬隆(以凝灰岩碎片的形式);曼卡克、帕布亞蘭、卡布。 Serang(混凝土骨料質量好,以凝灰岩和徑流中的碎片形式存在); Cicurug Kab。 Sukabumi(凝灰岩碎片形式的SiO2含量=63.20%,Al2O3=12.5%); Cikatomas, Cicurug G. Kiaraberes Bogor。
    日惹特區:古安山岩組中的 Kulon Progo。
  • 西努沙登加拉:Lendangnangka、Jurit、Rempung、Pringgesela(露頭厚度 2-5 m,分佈於 1000 公頃);北馬斯巴吉克凱奇。馬斯巴吉克卡布。東龍目島(露頭厚度 2 – 5 m,分佈於 1000 公頃); Kopang, Mantang Kec。巴圖基朗區。西龍目島(已用於3000公頃的磚塊);納里馬加區。雷比加·卡布。西龍目島(露頭厚度2-4 m,已被人們栽培)。
  • 馬魯古:朗姆酒、Gato、Tidore(SiO2 含量 = 35.67 – 67.89%;Al2O3 = 6.4 – 16.98%)。
  • 東努沙登加拉:Kec 的 Tanah Beak。巴圖良卡布。中央龍目島(用作輕質混凝土和過濾器的混合物)。
Posted on Leave a comment













*占碑:Salambuku,Lubukgaung,Kec。邦科,卡布。 Sarco(一种精细的火山碎屑)
来自 Kasai 组中直径为 0.5-15 厘米的火山岩或凝灰岩单元,其中含有浮石成分)。

  • 西爪哇:西海岸的万丹达努火山口(据称是该活动的结果)
    G. 喀拉喀托);纳格,卡布。万隆(以凝灰岩碎片的形式);曼卡克、帕布亚兰、卡布。 Serang(混凝土骨料质量好,以凝灰岩和径流中的碎片形式存在); Cicurug Kab。 Sukabumi(凝灰岩碎片形式的SiO2含量=63.20%,Al2O3=12.5%); Cikatomas, Cicurug G. Kiaraberes Bogor。
    日惹特区:古安山岩组中的 Kulon Progo。
  • 西努沙登加拉:Lendangnangka、Jurit、Rempung、Pringgesela(露头厚度 2-5 m,分布于 1000 公顷);北马斯巴吉克凯奇。马斯巴吉克卡布。东龙目岛(露头厚度 2 – 5 m,分布于 1000 公顷); Kopang, Mantang Kec。巴图基朗区。西龙目岛(已用于3000公顷的砖块);纳里马加区。雷比加·卡布。西龙目岛(露头厚度2-4 m,已被人们栽培)。
  • 马鲁古:朗姆酒、Gato、Tidore(SiO2 含量 = 35.67 – 67.89%;Al2O3 = 6.4 – 16.98%)。
  • 东努沙登加拉:Kec 的 Tanah Beak。巴图良卡布。中央龙目岛(用作轻质混凝土和过滤器的混合物)。
Posted on Leave a comment

Pumice Stone Supplier Kuchokera ku Indonesia

Kufufuza kwa Pumice ku Indonesia

Kuonjezera apo, mapu a malo ozungulira malo omwe ali ndi mapumice akuluakulu amapangidwa kuti awonedwe mwatsatanetsatane. Kufufuza mwatsatanetsatane kunachitika kuti adziwe ubwino ndi mphamvu za nkhokwe motsimikiza kwambiri. Njira zowunikira zomwe zimagwiritsidwa ntchito ndi monga kubowola (kubowola pamanja kapena makina) kapena kupanga zitsime zoyesera.

Posankha njira yoti mugwiritse ntchito, malo omwe akuyenera kufufuzidwa ayenera kuganiziridwa, zomwe zimachokera pa mapu a mapu opangidwa pa siteji yofufuza.

Njira yowunikira ikuchitika popanga zitsime zoyeserera, mawonekedwe omwe amagwiritsidwa ntchito ndi amakona anayi (atha kukhalanso mawonekedwe a lalikulu) ndi mtunda kuchokera ku mfundo imodzi / mayeso bwino kupita ku mayeso ena bwino pakati pa 25-50 m. Zida zomwe zimagwiritsidwa ntchito popanga zitsime zoyesera ndi monga; khasu, khwangwala, chopikicha, ndowa, chingwe.

Pamene kufufuza ndi kubowola kungathe kuchitidwa pogwiritsa ntchito kubowola kokhala ndi bailer (chitsanzo chotchera), kaya kubowola pamanja kapena makina. Pakufufuza uku, miyeso ndi mapu amachitidwa mwatsatanetsatane, kuti agwiritsidwe ntchito powerengera nkhokwe ndi kupanga mapulani a migodi.

Pumice Mining ku Indonesia

Nthawi zambiri, ma depositi a pumice amakhala pafupi ndi dziko lapansi, migodi imachitika ndi migodi yotseguka komanso yosankha. Kuvula mochulukira kungatheke ndi zida zosavuta (pamanja) kapena zida zamakina, monga ma bulldozers, scrapers, ndi zina. Pumice wosanjikiza wokha ukhoza kukumbidwa pogwiritsa ntchito chofukula, kuphatikizapo backhoe kapena fosholo yamagetsi, kenako kulowetsedwa mwachindunji mugalimoto kuti itengedwe kupita kumalo opangirako.

Pumice Processing ku Indonesia

Pofuna kupanga pumice ndi khalidwe lomwe likugwirizana ndi zofunikira za kunja kapena zofunikira za zomangamanga ndi mafakitale, pumice yochokera ku mgodi imakonzedwa poyamba, mwa zina mwa kuchotsa zonyansa ndi kuchepetsa kukula kwake.

Mwachidule, njira yopangira pumice imakhala ndi:

Kusanja (kusanja); kulekanitsa pumice woyera ndi pumice ndi zonyansa zambiri (impuritis), ndipo amachitidwa pamanja kapena scalping zowonetsera.
Kuphwanya (kuphwanya); kuchepetsa kukula pogwiritsa ntchito ma crushers, ma hummer mphero, ndi ma roll mphero.
Makulidwe; Kuti musankhe zinthu molingana ndi kukula kwake molingana ndi kufunikira kwa msika, zimachitika pogwiritsa ntchito chophimba.
Kuyanika (kuyanika); ngati zinthu zochokera ku mgodi zili ndi madzi ambiri, ndizofunikira kuziwumitsa, pakati pa zina pogwiritsa ntchito chowumitsa chozungulira.
Komwe Mungapeze Mwala wa Pumice ku Indonesia
Kukhalapo kwa mapumice aku Indonesia nthawi zonse kumalumikizidwa ndi mapiri angapo a Quaternary to Early Tertiary. Malo omwe pumice amapezeka ndi awa:

  • Jambi: Salambuku, Lubukgaung, Kec. Bongo, Kab. Sarco (wabwino pyroclastic)
    otengedwa ku mayunitsi a miyala yamapiri kapena tuff yokhala ndi zida za pumice zokhala ndi mainchesi 0.5-15 cm zomwe zili mu Kasai Formation).
  • Lampung: kuzungulira zilumba za Krakatoa, makamaka ku Long Island (chifukwa cha kuphulika kwa Mt.
    Krakatoa spewing pumice).
  • West Java: Danu Crater, Banten, m’mphepete mwa gombe lakumadzulo (zomwe zimadziwika kuti ndi zotsatira za ntchitoyi
    G. Krakatoa); Nambala, Kab. Bandung (mu mawonekedwe a zidutswa mu tuff); Mancak, Pabuaran, Kab. Serang (zabwino zophatikizira konkriti, ngati zidutswa za tuff ndi kuthamanga); Cicurug Kab. Sukabumi (SiO2 zili = 63.20%, Al2O3 = 12.5% ​​​​mu mawonekedwe a tuff rock zidutswa); Cikatomas, Cicurug G. Kiaraberes Bogor.
    Chigawo Chapadera cha Yogyakarta: Kulon Progo mu Old Andesite Formation.
  • West Nusa Tenggara : Lendangnangka, Jurit, Rempung, Pringgesela (outcrop makulidwe 2-5 m kufalikira pa 1000 Ha); North Masbagik Kec. Masbagik Kab. East Lombok (outcrop makulidwe 2 – 5 m kufalikira pa 1000 Ha); Kopang, Mantang Kec. Chigawo cha Batukilang. West Lombok (yagwiritsidwa ntchito pa mahekitala 3000 a njerwa); Narimaga district. Rembiga Kab. West Lombok (outcrop makulidwe 2-4 m, yalimidwa ndi anthu).
  • Maluku: Rum, Gato, Tidore (SiO2 content = 35.67 – 67.89%; Al2O3 = 6.4 – 16.98%).
  • East Nusa Tenggara: Tanah Beak, Kec. Baturliang Kab. Central Lombok (yomwe imagwiritsidwa ntchito ngati chisakanizo cha konkire yopepuka ndi zosefera).
Posted on Leave a comment

Dodavatel pemzy z Indonésie

Průzkum pemzy v Indonésii

Dále je pro podrobné prozkoumání zhotovena topografická mapa oblasti, kolem které jsou rozsáhlá ložiska pemzy. Byl proveden podrobný průzkum, aby bylo možné s větší jistotou určit kvalitu a sílu zásob. Mezi používané průzkumné metody patří vrtání (ruční vrtačka nebo strojní vrtačka) nebo provádění zkušebních vrtů.

Při určování, kterou metodu použít, je třeba vzít v úvahu stav místa, které má být prozkoumáno, což je založeno na topografické mapě vytvořené ve fázi průzkumu.

Průzkumná metoda se provádí vytvořením testovacích jamek, použitý vzor je obdélníkový (může být i ve tvaru čtverce) se vzdáleností od jednoho bodu/zkušební jamky k další testovací jamce mezi 25-50 m. Zařízení používaná při výrobě zkušebních jamek zahrnují; motyka, páčidlo, krumpáč, vědro, lano.

Zatímco průzkum vrtáním lze provádět pomocí vrtačky vybavené bailerem (zachycovačem vzorků), buď ruční vrtačky nebo strojní vrtačky. Při tomto průzkumu se podrobněji provádějí měření a mapování, které se použije při výpočtu zásob a plánování dolu.

Těžba pemzy v Indonésii

Obecně se ložiska pemzy nacházejí blízko zemského povrchu, těžba se provádí otevřenou a selektivní těžbou. Odklízení skrývky lze provádět jednoduchými nástroji (ručně) nebo mechanickými nástroji, jako jsou buldozery, škrabáky a další. Samotnou vrstvu pemzy lze vytěžit pomocí bagru, včetně rypadlo nebo elektrické lopaty, a poté naložit přímo do nákladního automobilu k přepravě do zpracovatelského závodu.

Zpracování pemzy v Indonésii

Pro výrobu pemzy v kvalitě odpovídající exportním požadavkům nebo potřebám stavebního a průmyslového sektoru se pemza z dolu nejprve zpracovává, mimo jiné odstraněním nečistot a zmenšením její velikosti.

Obecně řečeno, proces zpracování pemzy se skládá z:

Třídění (třídění); k oddělení čisté pemzy a pemzy s velkým množstvím nečistot (nečistoty) a provádí se ručně nebo skalpováním.
Drcení (drcení); ke zmenšení velikosti pomocí drtičů, hummerových mlýnů a válcových mlýnů.
Velikosti; Třídění materiálu na základě velikosti podle poptávky trhu se provádí pomocí síta.
Sušení (sušení); pokud materiál z dolu obsahuje hodně vody, je nutné jej vysušit mj. pomocí rotační sušárny.
Kde najít pemzu v Indonésii
Přítomnost indonéské pemzy je vždy spojena s řadou čtvrtohorních až raně třetihorních sopek. Mezi místa, kde se pemza vyskytuje, patří:

  • Jambi: Salambuku, Lubukgaung, Kec. Bongko, Kab. Sarco (jemné pyroklastikum)
    odvozené z jednotek vulkanické horniny nebo tufu se složkami pemzy o průměru 0,5-15 cm obsažených ve souvrství Kasai).
  • Lampung: kolem ostrovů Krakatoa, zejména na Long Island (v důsledku erupce Mt.
    Krakatoa chrlí pemzu).
  • Západní Jáva: kráter Danu, Banten, podél západního pobřeží (údajně výsledek aktivity
    G. Krakatoa); Nagre, Kab. Bandung (ve formě úlomků v tufu); Mancak, Pabuaran, Kab. Serang (dobrá kvalita pro betonové kamenivo, ve formě úlomků v tufu a odtoku); Cicurug Kab. Sukabumi (obsah SiO2 = 63,20 %, Al2O3 = 12,5 % ve formě úlomků tufových hornin); Cikatomas, Cicurug G. Kiaraberes Bogor.
    Zvláštní oblast Yogyakarta: Kulon Progo ve formaci starého andezitu.
  • Západní Nusa Tenggara: Lendangnangka, Jurit, Rempung, Pringgesela (tloušťka výchozu 2-5 m rozložená na 1000 ha); Severní Masbagik Kec. Masbagik Kab. východní Lombok (mocnost výchozu 2 – 5 m na ploše 1000 ha); Kopang, Mantang Kec. Okres Batukilang. Západní Lombok (bylo použito na 3000 hektarů cihel); okres Narimaga. Rembiga Kab. Západní Lombok (tloušťka výchozu 2-4 m, byl obděláván lidmi).
  • Maluku: Rum, Gato, Tidore (obsah SiO2 = 35,67 – 67,89 %; Al2O3 = 6,4 – 16,98 %).
  • Východní Nusa Tenggara: Tanah Beak, Kec. Baturliang Kab. Central Lombok (používá se jako směs lehkého betonu a filtrů).
Posted on Leave a comment

Supplier sa Pumice Stone Gikan sa Indonesia

Pagsuhid sa Pumice sa Indonesia

Dugang pa, ang usa ka topographic nga mapa sa lugar sa palibot diin adunay dagkong mga deposito sa pumice gihimo alang sa detalyado nga pagsuhid. Ang detalyado nga eksplorasyon gihimo aron mahibal-an ang kalidad ug kusog sa mga reserba nga adunay labi ka kasiguruhan. Ang mga pamaagi sa eksplorasyon nga gigamit naglakip sa drilling (hand drill o machine drill) o paghimo og test well.

Sa pagdeterminar kon unsang paagiha ang gamiton, ang kondisyon sa lokasyon nga tukion kinahanglang tagdon, nga gibase sa topographic map nga gihimo sa prospecting stage.

Ang pamaagi sa eksplorasyon gihimo pinaagi sa paghimo sa mga atabay sa pagsulay, ang sumbanan nga gigamit kay rectangular (mahimo usab nga porma sa usa ka square) nga adunay gilay-on gikan sa usa ka punto / pagsulay nga atabay hangtod sa sunod nga pagsulay nga atabay tali sa 25-50 m. Ang mga kagamitan nga gigamit sa paghimo sa mga atabay sa pagsulay naglakip; hoe, bareta, piko, balde, pisi.

Samtang ang eksplorasyon pinaagi sa drilling mahimo gamit ang usa ka drill nga adunay usa ka bailer (sample catcher), bisan ang hand drill o machine drill. Niini nga eksplorasyon, ang mga pagsukod ug pagmapa gihimo sa mas detalyado, aron magamit sa pagkalkulo sa mga reserba ug paghimo sa pagplano sa minahan.

Pagmina sa Pumice sa Indonesia

Sa kinatibuk-an, ang mga deposito sa pumice nahimutang duol sa nawong sa yuta, ang pagmina gihimo pinaagi sa bukas ug pinili nga pagmina. Ang pagtangtang sa overburden mahimo gamit ang yano nga mga himan (manual) o gamit ang mekanikal nga mga himan, sama sa mga bulldozer, scraper, ug uban pa. Ang pumice layer mismo mahimong makubkob gamit ang excavator, lakip ang backhoe o power shovel, dayon ikarga direkta sa usa ka trak aron ihatod sa processing plant.

Pagproseso sa Pumice sa Indonesia

Aron makahimo og pumice nga adunay kalidad nga nagsunod sa mga kinahanglanon sa pag-eksport o sa mga panginahanglan sa sektor sa konstruksyon ug industriya, ang pumice gikan sa minahan una nga giproseso, ug uban pa pinaagi sa pagtangtang sa mga hugaw ug pagkunhod sa gidak-on niini.

Sa kinatibuk-an, ang proseso sa pagproseso sa pumice naglangkob sa:

Pagsunud (pagsunud); sa pagbulag sa limpyo nga pumice ug pumice nga adunay daghang mga hugaw (impuritis), ug gihimo sa kamut o pinaagi sa scalping screens.
Pagdugmok (pagdugmok); aron makunhuran ang gidak-on gamit ang mga crusher, hummer mill, ug roll mill.
Mga gidak-on; Aron maihap ang materyal base sa gidak-on sumala sa panginahanglan sa merkado, kini gihimo pinaagi sa paggamit sa usa ka screen.
Pagpauga (pagpauga); kung ang materyal nga gikan sa minahan adunay daghang tubig, kinahanglan nga mamala kini, ug uban pa gamit ang rotary dryer.
Asa Makita ang Pumice Stone sa Indonesia
Ang presensya sa Indonesian nga pumice kanunay nga nalangkit sa usa ka serye sa Quaternary ngadto sa Early Tertiary nga mga bulkan. Ang mga lugar diin makit-an ang pumice naglakip sa:

  • Jambi: Salambuku, Lubukgaung, Kec. Bongko, Kab. Sarco (usa ka pino nga pyroclastic)
    nakuha gikan sa mga yunit sa bulkan nga bato o tuff nga adunay mga sangkap sa pumice nga adunay diyametro nga 0.5-15 cm nga anaa sa Kasai Formation).
  • Lampung: palibot sa mga isla sa Krakatoa, labi na sa Long Island (ingon resulta sa pagbuto sa Mt.
    Krakatoa nga nagbuga ug pumice).
  • Kasadpang Java: Danu Crater, Banten, ubay sa kasadpang baybayon (ingon nga resulta sa kalihokan
    G. Krakatoa); Nagre, Kab. Bandung (sa porma sa mga tipik sa tuff); Mancak, Pabuaran, Kab. Serang (maayo nga kalidad alang sa kongkreto nga mga aggregate, sa porma sa mga tipik sa tuff ug runoff); Cicurug Kab. Sukabumi (SiO2 content = 63.20%, Al2O3 = 12.5% ​​​​sa porma sa tuff rock fragments); Cikatomas, Cicurug G. Kiaraberes Bogor.
    Espesyal nga Rehiyon sa Yogyakarta: Kulon Progo sa Karaang Andesite Formation.
  • West Nusa Tenggara : Lendangnangka, Jurit, Rempung, Pringgesela (outcrop gibag-on 2-5 m mikaylap sa 1000 Ha); North Masbagik Kec. Masbagik Kab. East Lombok (outcrop gibag-on 2 – 5 m mikaylap sa 1000 Ha); Kopang, Mantang Kec. Distrito sa Batukilang. West Lombok (gigamit alang sa 3000 ka ektarya nga mga tisa); Narimaga district. Rembiga Kab. West Lombok (outcrop gibag-on 2-4 m, gitikad sa mga tawo).
  • Maluku: Rum, Gato, Tidore (SiO2 content = 35.67 – 67.89%; Al2O3 = 6.4 – 16.98%).
  • Sidlakang Nusa Tenggara: Tanah Beak, Kec. Baturliang Kab. Central Lombok (gigamit ingon usa ka sinagol nga gaan nga kongkreto ug mga pagsala).
Posted on Leave a comment

အင်ဒိုနီးရှားမှ Pumice ကျောက်ရောင်းချသူ

အင်ဒိုနီးရှားရှိ Pumice ရှာဖွေရေး

ထို့အပြင်၊ ကြီးမားသော pumice သိုက်များရှိသည့် ဧရိယာ၏ မြေမျက်နှာသွင်ပြင်မြေပုံကို အသေးစိတ်ရှာဖွေရန် ပြုလုပ်ထားသည်။ သိုက်များ၏ အရည်အသွေးနှင့် ခိုင်ခံ့မှုကို ပိုမိုသေချာစွာ သိရှိနိုင်စေရန်အတွက် အသေးစိတ် စူးစမ်းလေ့လာမှုကို ပြုလုပ်ခဲ့ပါသည်။ တူးဖော်ခြင်း (လက်တူးခြင်း သို့မဟုတ် စက်တူးခြင်း) သို့မဟုတ် စမ်းသပ်ရေတွင်းများ ပြုလုပ်ခြင်းတို့ ပါဝင်သည်။

မည်သည့်နည်းလမ်းကို အသုံးပြုရမည်ကို ဆုံးဖြတ်ရာတွင် စူးစမ်းလေ့လာရမည့် တည်နေရာအခြေအနေအား ထည့်သွင်းစဉ်းစားရန် လိုအပ်ပြီး ရှာဖွေဆဲအဆင့်တွင် ပြုလုပ်ထားသည့် မြေမျက်နှာသွင်ပြင်မြေပုံကို အခြေခံထားသည်။

စမ်းသပ်ရေတွင်းများ ပြုလုပ်ခြင်းဖြင့် တူးဖော်ခြင်းနည်းလမ်းကို အသုံးပြုပြီး ထောင့်မှန်စတုဂံပုံ (စတုရန်းပုံသဏ္ဍာန်လည်းရှိနိုင်သည်) သည် အမှတ်/စမ်းသပ်ရေတွင်းမှ နောက်စမ်းသပ်ရေတွင်းသို့ 25 မီတာမှ 50 မီတာကြား အကွာအဝေးဖြစ်သည်။ စမ်းသပ်ရေတွင်းများ ထုတ်လုပ်ရာတွင် အသုံးပြုသည့် စက်ကိရိယာများ ပါဝင်သည်။ ပေါက်ပြား၊ ပေါက်၊ ပေါက်ချွန်း၊ သံပုံး၊ ကြိုး။

တူးဖော်ခြင်းဖြင့် တူးဖော်ခြင်းအား ဘေလာ (နမူနာဖမ်းသူ)၊ လက်တူး သို့မဟုတ် စက်တူးစက်ဖြင့် တပ်ဆင်ထားသော တူးကို အသုံးပြု၍ လုပ်ဆောင်နိုင်သည်။ ဤရှာဖွေရေးတွင်၊ တိုင်းတာခြင်းနှင့် မြေပုံထုတ်ခြင်းများကို အရန်ငွေများ တွက်ချက်ခြင်းနှင့် မိုင်းစီမံကိန်းရေးဆွဲခြင်းတွင် အသုံးပြုရန် ပိုမိုအသေးစိတ်လုပ်ဆောင်ပါသည်။

အင်ဒိုနီးရှားတွင် Pumice Mining

ယေဘူယျအားဖြင့်၊ pumice deposits များသည် ကမ္ဘာမြေမျက်နှာပြင်အနီးတွင် တည်ရှိပြီး သတ္တုတူးဖော်ခြင်းကို open and selective mining ဖြင့် ဆောင်ရွက်ပါသည်။ ဝန်ထုပ်ဝန်ပိုး လွန်ကဲစွာ ထုတ်ယူခြင်းကို ရိုးရှင်းသော ကိရိယာများ (ကိုယ်တိုင်) သို့မဟုတ် မြေထိုးစက်၊ ခြစ်စက် နှင့် အခြားစက်ကိရိယာများ ကဲ့သို့သော စက်ကိရိယာများဖြင့် ပြုလုပ်နိုင်သည်။ ကြမ်းပြင် သို့မဟုတ် ပါဝါဂေါ်ပြား အပါအဝင် တွင်းတူးစက်ကို အသုံးပြု၍ တွင်းတူးအလွှာကို အသုံးပြု၍ တူးဖော်နိုင်ပြီး ပြုပြင်ထုတ်လုပ်သည့် စက်ရုံသို့ ပို့ဆောင်ရန်အတွက် ထရပ်ကားထဲသို့ တိုက်ရိုက် တင်ဆောင်နိုင်သည်။

အင်ဒိုနီးရှားတွင် Pumice ထုတ်ယူခြင်း။

ပို့ကုန်လိုအပ်ချက် သို့မဟုတ် ဆောက်လုပ်ရေးနှင့် စက်မှုကဏ္ဍများ၏ လိုအပ်ချက်များနှင့် ကိုက်ညီသော အရည်အသွေးရှိသော ပီနံကို ထုတ်လုပ်ရန်အတွက် သတ္တုတွင်းမှ အညစ်အကြေးများကို ဖယ်ရှားပြီး အရွယ်အစားကို လျှော့ချခြင်းဖြင့် အခြားသော သတ္တုတွင်းများမှ ဆပ်ပြာများကို ဦးစွာ စီမံဆောင်ရွက်ပါသည်။

ယေဘုယျအားဖြင့်ပြောရလျှင် pumice processing process တွင်-

အမျိုးအစားခွဲခြင်း (sorting); သန့်စင်သော pumice နှင့် pumice များကို အညစ်အကြေးများ ( impuritis ) ဖြင့် ခွဲခြားပြီး ကိုယ်တိုင် သို့မဟုတ် scalping screens ဖြင့် ပြုလုပ်သည်။
ကြိတ်ခြင်း (crushing); crusher၊ hummer mills နှင့် roll mills များကို အသုံးပြု၍ အရွယ်အစားကို လျှော့ချရန်။
အရွယ်အစားများ; စျေးကွက်တောင်းဆိုမှုအရ အရွယ်အစားအလိုက် ပစ္စည်းကို စီရန်၊ စခရင်ကို အသုံးပြု၍ ပြုလုပ်သည်။
အခြောက်ခံခြင်း (အခြောက်ခံခြင်း); မိုင်းတွင်းမှ ပစ္စည်းများတွင် ရေများစွာပါဝင်နေပါက rotary dryer ကိုအသုံးပြု၍ အခြားအခြောက်ခံရန် လိုအပ်ပါသည်။
အင်ဒိုနီးရှားရှိ Pumice ကျောက်ကိုဘယ်မှာရှာရမလဲ
အင်ဒိုနီးရှားမီးတောင်များ တည်ရှိနေခြင်းသည် လေးပုံတစ်ပုံမှ အစောပိုင်းအဆင့်အထိ မီးတောင်များ ဆက်တိုက်နှင့် အမြဲဆက်စပ်နေသည်။ ပိုးမွှားတွေ့ရှိသည့်နေရာများ ပါဝင်သည်။

  • Jambi- Salambuku၊ Lubukgaung၊ Kec။ Bongko၊ Kab Sarco (ကောင်းမွန်သော pyroclastic)
    Kasai ဖွဲ့စည်းမှုတွင်ပါရှိသော အချင်း 0.5-15 စင်တီမီတာရှိသော မီးတောင်ကျောက်များ သို့မဟုတ် ပလတ်စတစ် အစိတ်အပိုင်းများပါရှိသော ထုပ်ပိုးမှုမှ ဆင်းသက်လာသည်။
  • Lampung – အထူးသဖြင့် Krakatoa ကျွန်းများတဝိုက်၊ အထူးသဖြင့် Long Island (တောင်ပေါက်ကွဲမှု၏ရလဒ်အဖြစ်။
    Krakatoa သည် ပွန်းပဲ့ခြင်း)။
  • အနောက်ဂျာဗား – အနောက်ဘက်ကမ်းရိုးတန်းတစ်လျှောက် Danu Crater၊ Banten (လှုပ်ရှားမှု၏ရလဒ်ဟုစွပ်စွဲသည်
    G. Krakatoa); နာဂရ၊ Kab Bandung ( tuff အပိုင်းအစများပုံစံအတွက်); Mancak၊ Pabuaran၊ Kab Serang (ကွန်ကရစ်ပေါင်းစည်းမှုအတွက် အရည်အသွေးကောင်း၊ ထုပ်ပိုးမှုပုံစံ အပိုင်းအစများ)၊ Cicurug Kab Sukabumi (SiO2 အကြောင်းအရာ = 63.20%, Al2O3 = 12.5% ​​​​ tuff ကျောက်အပိုင်းအစများ၏ပုံစံ); Cikatomas၊ Cicurug G. Kiaraberes Bogor။
    Yogyakarta ၏ အထူးဒေသ- Old Andesite ဖွဲ့စည်းမှုတွင် Kulon Progo။
  • အနောက် Nusa Tenggara : Lendanngangka, Jurit, Rempung, Pringgesela (အထွက်အထူ 2-5 m မှ 1000 Ha ထက်ပို၍ ပျံ့နှံ့); မြောက်ဘက် Masbagik Kec Masbagik Kab အရှေ့ Lombok (အထွက်အထူ 2 မှ 5 မီတာ 1000 ဟက်တာကျော် ဖြန့်ကျက်); Kopang၊ Mantang Kec။ Batukilang ခရိုင်။ အနောက် Lombok (အုတ် 3000 ဟက်တာအတွက် အသုံးပြုခဲ့သည်); Narimaga ခရိုင်။ Rembiga Kab အနောက် Lombok (အထွက်နှုန်း အထူ ၂-၄ မီတာ၊ လူများ စိုက်ပျိုးထားသည်)။
  • Maluku- Rum၊ Gato၊ Tidore (SiO2 ပါဝင်မှု = 35.67 – 67.89%; Al2O3 = 6.4 – 16.98%)။
  • အရှေ့ Nusa Tenggara- Tanah Beak၊ Kec။ Baturliang Kab Central Lombok (အပေါ့စားကွန်ကရစ်နှင့် ဇကာများ ရောနှောအသုံးပြုသည်)။
Posted on Leave a comment

Доставчик на пемза от Индонезия

Проучване на пемза в Индонезия

Освен това се прави топографска карта на района, около който има мащабни залежи на пемза за детайлно проучване. Извършено е детайлно проучване, за да се определи с по-голяма сигурност качеството и силата на запасите. Използваните методи за проучване включват пробиване (ръчно или машинно пробиване) или изработване на пробни кладенци.

При определяне кой метод да се използва, трябва да се вземе предвид състоянието на местоположението, което ще се изследва, което се основава на топографската карта, направена на етапа на проучване.

Проучвателният метод се извършва чрез изработване на пробни кладенци, използваният модел е правоъгълен (може да бъде и под формата на квадрат) с разстояние от една точка/изпитателен кладенец до следващия тестов кладенец между 25-50 m. Оборудването, използвано при производството на тестови кладенци, включва; мотика, лост, кирка, кофа, въже.

Докато проучването чрез пробиване може да се извърши с помощта на бормашина, оборудвана с балон (уловител за проби), ръчна или машинна бормашина. При това проучване измерванията и картографирането се извършват по-подробно, за да се използват при изчисляване на запаси и планиране на мините.

Добив на пемза в Индонезия

По принцип залежите от пемза се намират близо до земната повърхност, добивът се извършва чрез открит и селективен добив. Изчистването на открития слой може да се извърши с прости инструменти (ръчно) или с механични инструменти, като булдозери, скрепери и други. Самият слой пемза може да се изкопае с помощта на багер, включително багер или лопата, след което да се натовари директно в камион, който да бъде транспортиран до преработвателното предприятие.

Преработка на пемза в Индонезия

За да се произведе пемза с качество, което отговаря на изискванията за износ или нуждите на строителния и индустриалния сектор, пемзата от мината се обработва първо, наред с другото чрез отстраняване на примесите и намаляване на нейния размер.

Най-общо казано, процесът на обработка на пемза се състои от:

Сортиране (сортиране); за отделяне на чиста пемза и пемза с много примеси (импурити) и се извършва ръчно или чрез скалпиране на сита.
Раздробяване (натрошаване); за намаляване на размера с помощта на трошачки, хамър мелници и ролкови мелници.
Размери; Сортирането на материала според размера според пазарното търсене се извършва с помощта на екран.
Сушене (сушене); ако материалът от мината съдържа много вода, е необходимо да се изсуши, наред с другото с помощта на ротационна сушилня.
Къде да намерите пемза в Индонезия
Наличието на индонезийска пемза винаги се свързва с поредица от кватернерни до раннотерциерни вулкани. Местата, където се намира пемза, включват:

  • Джамби: Саламбуку, Лубукгаунг, Кеч. Бонгко, Каб. сарко (фин пирокластик)
    получени от единици вулканична скала или туф с компоненти на пемза с диаметър 0,5-15 cm, съдържащи се във формацията Kasai).
  • Лампунг: около островите Кракатау, особено на Лонг Айлънд (в резултат на изригването на вр.
    Кракатау, бълващ пемза).
  • Западна Ява: кратер Дану, Бантен, по протежение на западния бряг (уж резултат от дейността
    G. Krakatoa); Нагре, Каб. Бандунг (под формата на фрагменти в туф); Манчак, Пабуаран, Каб. Serang (добро качество за бетонови инертни материали, под формата на фрагменти в туф и отток); Cicurug Kab. Сукабуми (съдържание на SiO2 = 63,20%, Al2O3 = 12,5% под формата на скални фрагменти от туф); Цикатомас, Чикуруг Г. Киараберес Богор.
    Специален регион на Джокякарта: Кулон Прого в старата андезитна формация.
  • Западна Нуса Тенгара: Lendangnangka, Jurit, Rempung, Pringgesela (дебелина на разкритието 2-5 m, разположено върху 1000 Ha); Северен Масбагик Кеч. Masbagik Kab. Източен Ломбок (дебелина на разкритието 2 – 5 m, разположено върху 1000 Ha); Копанг, Мантанг Кеч. Област Батукиланг. Западен Ломбок (използван е за 3000 хектара тухли); Област Наримага. Rembiga Kab. Западен Ломбок (дебелина на разкритието 2-4 m, е култивирано от хората).
  • Малуку: Ром, Гато, Тидор (съдържание на SiO2 = 35,67 – 67,89%; Al2O3 = 6,4 – 16,98%).
  • Източна Нуса Тенгара: Tanah Beak, Kec. Батурлианг Каб. Централен Ломбок (използва се като смес от лек бетон и филтри).